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ABSTRACT

It is well known that the notion of measure and integral were released early enough in
close connection with practical problems of measuring of geometric figures. Notion
of measure was outlined in the early 20th century through H. Lebesgue’s research,
founder of the modern theory of measure and integral. It was developed concurrently
a technique of integration of functions. Gradually it was formed a specific area today
called the measure and integral theory. Essential contributions to building this the-
ory was made by a large number of mathematicians: C. Carathodory, J. Radon, O.
Nikodym, S. Bochner, J. Pettis, P. Halmos and many others. In the following we present
several abstract sets, classes of sets. There exists the sets which are not Lebesgue
measurable and the sets which are Lebesgue measurable but are not Borel measur-
able. Hence B ⊂ L ⊂ P(X).

Keywords: σ-algebra, class of equivalence, Borel measurable sets, Lebesgue mea-
surable sets, immeasurable Lebesgue sets.

1 Lebesgue measure on R

Let R be the set of real numbers. We denote by

S = {[a, b) | a ∈ R, b ∈ R}.

We denote by µ the function µ : S → R+, defined by
µ([a, b)) = b− a.

Definition 1. It is called Lebesgue outer measure the

function

µ∗ :

{
A ⊂ R | (∃) (En)n∈N ⊂ S,

∪
n∈N

En ⊃ A

}
→ R+

defined by

µ∗(A) = inf

{∑
n∈N

µ(En) |
∪
n∈N

En ⊃ A, (En)n∈N ∈ S

}

Remark 1. Since R =
∪

n[−n, n) =
∪

n∈Z[n, n+1)

we have {A ⊂ R | (∃) (En)n∈N ⊂ S,
∪

n En ⊃
A} = P(R). Hence µ∗ : P(R) → R+.

Theorem 1. The Lebesgue outer measure holds the

following properties:

1. µ∗(ϕ) = 0

2. A ⊂ B ⊂ R ⇒ µ∗(A) ≤ µ∗(B)

3. (An)n∈N ⊂ P(R) ⇒ µ∗(
∪

n∈N An) ≤∑
n∈N µ∗(An)

4. A ⊂ R, t ∈ R ⇒ µ∗(A+ t) = µ∗(A)

5. µ∗ | S = µ.

Definition 2. A subset E ⊂ R is called Lebesgue

measurable if the following equality holds:

µ∗(A) = µ∗(A∩E)+µ∗(A∩CE), for any A ∈ P(R)

Remark 2. Since µ∗ is increasing the equality is

equivalent by inequality µ∗(A) ≥ µ∗(A∩E)+µ∗(A∩
CE). Hence equality is not trivial only for A ∈ P(R)
with µ∗(A) < +∞.

We denote by L = {E ∈ P(R) | E is Lebesgue
measurable}.
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Theorem 2. For the couple (L, µ∗) the following as-

sertions hold:

1. E,F ∈ L we get E ∪ F ∈ L
2. E,F ∈ L we get F \ E ∈ L
3. (En)n∈N ⊂ L we get

∪
n∈N En ∈ L

4. µ∗ | L is a positive measure

5. E ∈ P(R), µ∗(E) = 0, F ⊂ E we get F ∈ L
and µ∗(F ) = 0

6. S ⊂ L.
7. for any E ∈ L we get {x+t | x ∈ E} = E+t ∈

L, for any t ∈ R.

Conclusion 1. From above Theorem it follows that

the Lebesgue measurable sets L form a σ-algebra

which includes S and µ∗ |L is a positive measure.

Remark 3. Restriction of µ∗ to L is called induced

measure by µ∗ and was noted by µ.

Remark 4. The set S and the function µ have the fol-

lowing properties:

1. E,F ∈ S ⇒ E ∩ F ∈ S
2. E,F ∈ S ⇒ E−F =

∪p
k=1 Ek, (Ek)1≤k≤p ⊂

S, Ei ∩ Ej = ϕ.

3. F ∈ S, F = F1 ∪ F2, F1 ∈ S, F2 ∈ S, F1 ∩
F2 = ϕ it follows that µ(F ) = µ(F1) + µ(F2).

2 Special properties of Lebesgue mea-
sure and measurability

We denote by µ restriction of outer Lebesgue mea-
sure to class of Lebesgue measurable sets and will
call µ Lebesgue measure. We denote by L the sets
Lebesgue measurable.

We denote by B the Borel sets on R.
Any Borel set is Lebesgue measurable.
Lebesgue measure is only measure σ-finite on B

whose restriction to S is the length intervals.
For any subset of R with outer Lebesgue measure

finite there exists a Borel subset which contains and
which has the same outer measure.

Any Lebesgue measurable set is reunion of a Borel
set and a subset a Borel set of null Lebesgue measure.

For any Lebesgue measurable subset A of R with
outer Lebesgue measure finite and for any ε > 0 there
exists a finite reunion of intervals from S which differ
to A whose outer Lebesgue measure is smaller than ε.

Lebesgue measure coincide with outer measures in-
duced by restrictions of Lebesgue measure to I(S),

B,L we have

µ∗(A) = inf{µ(E) | A ⊂ E,E ∈ B}
= inf{µ(M) | A ⊂ M,M ∈ L}.

Theorem 3. Let DR be topology of R, FR be the

closed sets of R,

I1 = {(a, b) | a, b ∈ R}; I2 = {(a, b] | a, b ∈ R},
I3 = {[a, b] | a, b ∈ R}, I4 = {[a,+∞) | a ∈ R},
I5 = {(a,+∞) | a ∈ R}, I6 = {(−∞, a] | a ∈ R},
I7 = {(−∞, a) | a ∈ R}.

Then B = σ(DR) = σ(FR) = σ(Ik) for any k, 1 ≤
k ≤ 7.

Corollary 1. R is a Borel set, {x} is a Borel set for

any x ∈ R and any subset at most countable of R is

Borel set.

The outer Lebesgue measure is µ∗(A) =

inf{µ(D) | A ⊂ D,D ∈ DR}, for any A ⊂ R.
Any at most countable subset of R has Lebesgue

measure null.

There exists subset or R which is not Lebesgue
measurable.

Example. For any M ⊂ [0, 1], M ∈ L, µ(M) > 0

there exists A ⊂ M such that A ̸∈ L.

Proof. We will define an equivalence relation:

x ∼ y if and only if x− y ∈ Q.

We consider ξ the set of distinct equivalence class de-

termined by the elements of M . We choice in each

equivalence class from ξ an element from M and we

denote by A the set all these elements.

Obviously M ⊂
∪

t∈Q A + t, since each element

of M belongs to equivalence class determined by him-

self. On the other hand (A + t1) ∩ (A + t2) = 0 for

t1 ̸= t2, t1, t2 ∈ Q since otherwise a1 + t1 = a2 + t2,

ai ∈ A, i = 1, 2 hence a1 − a2 = t1 − t2 ∈ Q i.e.

a1 ∼ a2 contradiction with construction of A (the el-

ements of A are in distinct equivalence class hence is

not equivalent).

We suppose that A is Lebesgue measurable, hence

A ∈ L. From invariance to translations of Lebesgue

measure we deduce A+ t ∈ L and µ(A) = µ(A+ t),
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for any t ∈ Q. Since µ is σ-additive and monoton it

follows that

µ(M) ≤
∑
t∈Q

µ(A+ t) =
∑
t∈Q

µ(A)

Since µ(M) > 0 it follows that µ(A) > 0, and we

have ∪
t∈[0,1]∩Q

A+ t ⊂
∪

t∈[0,1]∩Q

M

+ t ⊂
∪

t∈[0,1]∩Q

[0, 1] + t ⊆ [0, 2].

We deduce then∑
t∈[0,1]∩Q

µ(A+ t) =
∑

t∈[0,1]∩Q

µ(A)

= µ

 ∪
t∈[0,1]∩Q

A+ t

 ≤ 2.

Above inequality occurs if µ(A) = 0 contradiction

with µ(A) > 0. Hence A ̸∈ L.
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[7] N. Boboc, Gh. Bucur, A. Cornea, Hilbertian and
lattice Theoretical Methods in Potential Theory,
Preprint Series in Mathematics No. 14, 1977,
Bucureşti.
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